- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
hard
If the system of equations $2 x+3 y-z=5$ ; $x+\alpha y+3 z=-4$ ; $3 x-y+\beta z=7$ has infinitely many solutions, then $13 \alpha \beta$ is equal to
A
$1110$
B
$1120$
C
$1210$
D
$1220$
(JEE MAIN-2024)
Solution
Using family of planes
$2 \mathrm{x}+3 \mathrm{y}-\mathrm{z}-5=\mathrm{k}_1(\mathrm{x}+\alpha \mathrm{y}+3 \mathrm{z}+4)+\mathrm{k}_2(3 \mathrm{x}-\mathrm{y}+\beta \mathrm{z}-7)$
$2=\mathrm{k}_1+3 \mathrm{k}_2, 3=\mathrm{k}_1 \alpha-\mathrm{k}_2,-1=3 \mathrm{k}_1+\beta \mathrm{k}_2,-5=4{k}_1-7 \mathrm{k}_2$
On solving we get
$\begin{gathered}k_2=\frac{13}{19}, k_1=\frac{-1}{19}, \alpha=-70, \beta=\frac{-16}{13} \\ 13 \alpha \beta=13(-70)\left(\frac{-16}{13}\right) \\ =1120\end{gathered}$
Standard 12
Mathematics