If the system of equations  $2 x+3 y-z=5$  ;  $x+\alpha y+3 z=-4$  ;  $3 x-y+\beta z=7$ has infinitely many solutions, then $13 \alpha \beta$ is equal to

  • [JEE MAIN 2024]
  • A

    $1110$

  • B

    $1120$

  • C

    $1210$

  • D

    $1220$

Similar Questions

If the following system of linear equations

$2 x+y+z=5$

$x-y+z=3$

$x+y+a z=b$

has no solution, then :

  • [JEE MAIN 2021]

The cubic $\left| {\begin{array}{*{20}{c}}
  0&{a - x}&{b - x} \\ 
  { - a - x}&0&{c - x} \\ 
  { - b - x}&{ - c - x}&0 
\end{array}} \right| = 0$ has a reperated root in $x$ then,

Solution of the equation $\left| {\,\begin{array}{*{20}{c}}1&1&x\\{p + 1}&{p + 1}&{p + x}\\3&{x + 1}&{x + 2}\end{array}\,} \right| = 0$ are

$2x + 3y + 4z = 9$,$4x + 9y + 3z = 10,$$5x + 10y + 5z = 11$ then the value of $ x$ is

Let $\lambda $ be a real number for which the system of linear equations $x + y + z = 6$
 ; $4x + \lambda y - \lambda z = \lambda - 2$ ; $3x + 2y -4z = -5$ Has indefinitely many solutions. Then $\lambda $ is a root of the quadratic equation

  • [JEE MAIN 2019]